Postitused: 125
Keel: Esperanto
nornen (Näita profiili) 12. veebruar 2021 22:17.12
nornen (Näita profiili) 13. veebruar 2021 5:00.36
Ĉu vi estas doktoro/profesoro de matematiko?
sergejm (Näita profiili) 13. veebruar 2021 6:47.50
Altebrilas (Näita profiili) 13. veebruar 2021 11:45.02
La ekzisto de tia triangulo estas alia problemo. Sed se ĝi ekzistas, tio estas la solvo.
Oni povas kalkuli la intersektaj punktoj, kie la horizontalo y=6 intersektas la cirklo x^2+y^2=5 =>x^2+36=25 => x ^2=11
La solvo estas x=(+ /- ) i*sqrt(11), t.e. sur la imaginara akso de x
sergejm (Näita profiili) 13. veebruar 2021 12:20.50
sergejm (Näita profiili) 17. veebruar 2021 22:21.37
Solvu la ekvacion:
(x² - 7x + 11) ^ (x² - 13x + 42) = 1
kie x ^ y signifas levo de x al potenco y - pow(x,y) en C++
Kiel diras la aŭtoro de la video:
Laŭ rusa matematiko, la solvo estas { 2, 5, 6, 7 }
Laŭ usona matematiko, la solvo estas { 2, 3, 4, 5, 6, 7 }
Sed fakte, iuj rusaj matematikistoj konsentas kun usona respondo.
Frano (Näita profiili) 18. veebruar 2021 8:19.30
sergejm (Näita profiili) 18. veebruar 2021 10:29.34
Frano:Kio estas la produkto de ĉiuj pozitivaj (x > 0) reelaj nombroj?Kvanto de reelaj nombroj ne estas kalkulebla (счетно), sed kontinua (континуум).
Tiajn produktojn matematiko ne rigardas, nur limo de prodikto de senfina vico de nombroj, kies kvanto estas kalkulebla. Kaj eĉ tiam rezulto ofte dependas de ordo.
Frano (Näita profiili) 18. veebruar 2021 11:50.44
Kvanto de reelaj nombroj ne estas kalkulebla. Sed estas konata "esperanta rimedo" - divigu, rekunmetu kaj regu.
Ni divigu intervalon ]0,∞[ je tri partoj: ]0 , A[, A kaj ]A , ∞[ kie A estas arbitra reela nombro.
Ni difinu unu-al-unu rilaton inter du aroj. Por ĉiu nomro B el ]0,A[ ni prenu tielan nombron C el ]A,∞[ ke C*B=A^2.
Tiam ∏ = A * ∏(A^2)
Ĉar A estis elektita arbitre, do ni havas tri ebloj:
Se A>1, tiam lim∏ = ∞.
Se A=1, tiam ∏ = 1.
Se A<1, tiam lim∏ = 0.
sergejm (Näita profiili) 18. veebruar 2021 14:37.17
Por ne havi aferon kun nekalkulebla aro de nombrojn, kalkulu produkton de raciaj pozitivaj nombroj
R = П p[ i ]/q[ i ]
kie p[ i ] > 0, q[ i ] > 0 el Z kaj por ajna r > 0 el Q ekzistas unu kaj nur unu i, tia ke r = p[ i ]/q[ i ].