إلى المحتويات

Matematika tasko

من sergejm, 10 فبراير، 2021

المشاركات: 125

لغة: Esperanto

sergejm (عرض الملف الشخصي) 4 أغسطس، 2021 7:49:39 م

Estas tasko, kiu aspektas simpla, sed estas ankoraŭ ne solvita.
Prenu ajnan pozitivan entjeran nombron.
Se ĝi estas nepara, venonta nombro estas 3×x+1
Se ĝi estas par, venonta nombro estas x/2.
Komecu de 7.
Ni ricevas sekvencon:
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, (4, 2, 1)
Ĉu se ni elektas ajnan komencan nombron ni ricevos (4, 2, 1) en la fino?
Se ni permesos negativajn nombrojn, estas aliaj cikloj, ekzemple (-2, -1) kaj (0) por nulo.
Por pozitivaj nombroj oni kontrolis ĉiujn nombrojn ĝis 2^68 kaj ĉiuj ili finiĝas per (4, 2, 1).

nornen (عرض الملف الشخصي) 5 أغسطس، 2021 5:17:21 م

Ŝajne vi kaj mi spektas la samajn jutubajn kanalojn.

sergejm (عرض الملف الشخصي) 6 أغسطس، 2021 5:50:19 م

Alia fakto, kiun mi trovis en jutubo, sed neniam pensis pri ĝi - kial trajno povas turni?
Se vi turnas deksten, dekstraj radoj devas trairi malpli longan vojon, ol la maldekstraj.
En aŭtomobilo estas diferencialo kaj maldekstraj radoj turnas pli rapide ol la dekstra.
Sed en trajno maldekstra kaj dekstra rado faras unu tuton - radan paron, kiu turnas samrapide.
Sen tiu ruzeco trajno perdus multe da energio pro frotado.

nornen (عرض الملف الشخصي) 6 أغسطس، 2021 5:58:25 م

Ho, tiun ĉi jutuberon mi ne vidis.
Ĉu tio iel rilatas al la konusa formo de la radoj?

Se la radparo moviĝas al ekstera flanko de la kurvo, la radiuso de la interna rado estos malpli granda ol tiu de la externa rado. Do traturniĝante la samon angulon, la interna rado kovras malpli vojon ol la eksterna.

sergejm (عرض الملف الشخصي) 6 أغسطس، 2021 6:31:19 م

Jes, la radoj havas konusan formon.

sergejm (عرض الملف الشخصي) 12 أكتوبر، 2021 5:49:11 م

De tegmento de konstruaĵo kun alteco h oni ĵetas kun rapideco v ŝtonon kun maso m. Kia devas esti angulo de la ĵeto por ĵeti plej malproksime? Aerrezisto mankas.
Ne uzu derivaĵojn, nur fizikon kaj geometrion.

nornen (عرض الملف الشخصي) 13 أكتوبر، 2021 12:19:59 ص

Ho ve, sen derivaĵoj...

Ne estas tro malfacile alveni al la distanco s = cos φ (sin φ + √(sin² φ + 2h) ), elektinte v = 1 kaj a = g = 1 sen limigo (perdo) de ĝeneraleco.

Nun, la logika sekvonta paso estus solvi 0 = ∂s/∂φ, sed tion vi malpermesas.

Ĉu vi povus doni helpeton pri tio, kiun aspekton geometrian oni vidu? Angulojn? Fokuson kaj direktilon? Vidi la parabolon sur konuso? Mallumajn, arĥaikajn trigonometriajn identojn?

Kial vi menciis la mason? Ĉu tio estas ruzo aŭ helpo?

nornen (عرض الملف الشخصي) 13 أكتوبر، 2021 12:47:08 ص

nornen:elektinte v = 1 kaj a = g = 1 sen limigo (perdo) de ĝeneraleco
Tio estas stultaĵo. Ŝajnas ke φ dependas ne nur de h, sed ankaŭ de v²/g...

sergejm (عرض الملف الشخصي) 13 أكتوبر، 2021 1:45:24 ص

Maso en la rezulto mankas, sed ĝi necesas por uzi la leĝon de konservo de energio.
vf - fina rapideco
m vf²/2 = m v²/2+ m g h
dividu je m/2:
vf² = v² + 2 g h
vf = sqrt(v² + 2 g h)

Konstruu triangulon OAB, kie OA estas vektoro de komenca rapideco, OB estas vektoro de fina rapideco.
Trovu areon S de la triangulo kaj ĝian ligon kun distanco s - ĝi estas proporcia.
Maksimuma s estas kiam S estas maksimuma.
Maksimuma S estas kiam la triangulo estas ortangula.
Trovu φ el la triangulo.

StefKo (عرض الملف الشخصي) 13 أكتوبر، 2021 6:37:21 ص

Proks. 45 gradoj (sen kalkulo)

عودة للاعلى